A local linear embedding module for evolutionary computation optimization

نویسنده

  • Fabio Boschetti
چکیده

A Local Linear Embedding (LLE) module enhances the performance of two Evolutionary Computation (EC) algorithms employed as search tools in global optimization problems. The LLE employs the stochastic sampling of the data space inherent in Evolutionary Computation in order to reconstruct an approximate mapping from the data space back into the parameter space. This allows to map the target data vector directly into the parameter space in order to obtain a rough estimate of the global optimum, which is then added to the EC generation. This process is iterated and considerably improves the EC convergence. Thirteen standard test functions and two real-world optimization problems serve to benchmark the performance of the method. In most of our tests, optimization aided by the LLE mapping outperforms standard implementations of a genetic algorithm and a particle swarm optimization. The number and ranges of functions we tested suggest that the proposed algorithm can be considered as a valid alternative to traditional EC tools in more general applications. The performance improvement in the early stage of the convergence also suggests that this hybrid implementation could be successful as an initial global search to select candidates for subsequent local optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evolutionary Computation Embedded IIR LMS Algorithm

An improved Infinite Impulse Response (IIR) Least Mean Squares (LMS) algorithm using parallel filters and evolutionary programming techniques is introduced. IIR filters have the attractive property that they require fewer computations than a corresponding FIR filter, but they are prone to instability and local minimum problems. Evolutionary algorithms are good in global optimization scenarios, ...

متن کامل

Estimation of LPC coefficients using Evolutionary Algorithms

The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...

متن کامل

An Evolutionary Non-Linear Great Deluge Approach for Solving Course Timetabling Problems

The aim of this paper is to extend our non-linear great deluge algorithm into an evolutionary approach by incorporating a population and a mutation operator to solve the university course timetabling problems. This approach might be seen as a variation of memetic algorithms. The popularity of evolutionary computation approaches has increased and become an important technique in solving complex ...

متن کامل

A Filter-Based Evolutionary Algorithm for Constrained Optimization

We introduce a filter-based evolutionary algorithm (FEA) for constrained optimization. The filter used by an FEA explicitly imposes the concept of dominance on a partially ordered solution set. We show that the algorithm is provably robust for both linear and nonlinear problems and constraints. FEAs use a finite pattern of mutation offsets, and our analysis is closely related to recent converge...

متن کامل

Optimization of Non-linear Functions Using Evolutionary Computation

Global optimization is important if the function has a number of optima of which some are local and some global. Since many real world problems contain multiple optima, traditional methods may not be adequate to solve such problems due to the possibility of getting trapped at local optimum. Hence they do not ensure global optima. Differential Evolution (DE) is an evolutionary optimization techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Heuristics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008